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This web appendix contains two Appendices that prove some necessary
results in the main paper.

Appendix one

In this Appendix we derive the power of studies that contribute to a random-
effects meta-analysis. We require the result that, assuming a > 0,∫ ∞

−∞
Φ((x− b)/a)φ(x)dx = Φ

( −b√
1 + a2

)
(1)

where φ(·) is the standard normal probability density function. This is
most easily shown by considering the joint distribution of two independent
standard normal variables X and Y , and evaluating P (Y ≤ (X − b)/a)
using a double integral. Evaluating the inner integral immediately yields
the left hand side of (1). Then, because a > 0, another way to more directly
evaluate this probability is P (Y ≤ (X − b)/a) = P (aY − X + b ≤ 0);
aY −X + b ∼ N(b, 1 + a2), which yields the right hand side of (1).

From the main paper we have that the study specific powers are βi(δi, σi) =
1 + Φ(−Za + δi/σi)−Φ(Za + δi/σi) and under the random effects model we
have δi ∼ N(δ, τ2). Hence the power of the ith study in terms of δ is obtained
by integrating out the random effects

β(δ, τ2, σi) =

∫ ∞
−∞

(1 + Φ(−Za +x/σi)−Φ(Za +x/σi))
1

τ
φ((x− δ)/τ)dx (2)

Using (1) the integral in (2) can be evaluated, after changing variables in
the integration, as

β(δ, τ2, σi) = 1 + Φ

(
(−Zaσi + δ)/

√
σ2i + τ2

)
− Φ

(
(Zaσi + δ)/

√
σ2i + τ2

)
(3)
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Assuming that the distributions of σi and δi are independent, and approxi-
mating the distribution of σi with its empirical distribution, upon taking the
sample average of powers in (3) we obtain equation (5) of the main paper.

Another more direct way to obtain (3) is to recognise that we have
evaluated the expectation of βi(δi, σi) over the distribution of δi. βi(δi, σi)
is the probability of rejecting the study specific null hypothesis given δi (and
σi). From the law of total expectation, this expectation is the (unconditional
on δi) probability of rejecting the study specific null hypothesis, so that we
can also calculate (3) as the probability that Yi ∼ N(µ, σ2i + τ2) lies further
than Zaσi away from µ0.

Appendix two

In this Appendix we derive the distribution of the test statistic for the spe-
cial case where all studies are the same ‘size’ (σ2i = σ2) for all i. This
extends previous work that derives this distribution under the assumption
that µ0 = µ, so that δ = 0 (Jackson and Bowden 2009). For this special case
the DerSimonian and Laird, REML and Paule-Mandel estimators become
equivalent and, before truncation, we have σ2+ τ̂2 = s2, where s2 is the sam-
ple variance. This means that τ̂2 = max(0, s2− σ2) for all three estimators.
This result is easily established for the DerSimonian and Laird and Paule-
Mandel estimators from equating σ2i = σ2 in their estimating equations and
a little algebra, where we also note that the pooled estimators of µ that
appear in the estimating equations are equal to ȳ. For REML this result is
similarly easily obtained from the expression for the restricted log likelihood
given by Normand (1999), her page 336, upon setting σ2i = σ2, differentiat-
ing with respect to τ2 and setting the resulting expression to zero. The data
are independent and identically distributed normal random variables when
all studies are the same size, so that standard textbook results apply; in
particular the sample mean ȳ and the sample variance s2 follow well known
distributions and are independent.

Let E denote an indicator random variable where E = 0 if τ̂2 = 0 and
E = 1 if τ̂2 > 0. We then evaluate the cumulative distribution function of
the test statistic T , P (T ≤ t), as

P (T ≤ t) = P (E = 0)P (T ≤ t|E = 0)+{1−P (E = 0)}P (T ≤ t|E = 1) (4)

and we consider the special case where σ2i = σ2 for all i. From the the result
that τ̂2 = max(0, s2 − σ2), E = 1 is equivalent to s2 > σ2 and E = 0 is
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equivalent to s2 ≤ σ2. Jackson and Bowden (2009) show that

P (E = 0) = P (s2 ≤ σ2) = Γ1

(
k − 1

2
,
(1− I2)(k − 1)

2

)
(5)

Given that E = 0 the test statistic becomes T = (ȳ − µ0)/
√
σ2/k. Since

ȳ and s2 are independent, and the event that E = 0 is equivalent to s2 ≤
σ2, we have that the unconditional distribution of T and its corresponding
conditional distribution given that E = 0 are the same and are both T ∼
N(∆, 1/(1− I2)), where I2 = τ2/(σ2 + τ2) and ∆ = δ

√
k/σ. Hence

P (T ≤ t|E = 0) = Φ
(
(t−∆)

√
1− I2

)
(6)

The most difficult term to derive is is P (T ≤ t|E = 1). Given that
E = 1 the test statistic T becomes T = (ȳ − µ0)/

√
s2/k. We write Y =√

k(ȳ−µ0)/
√
σ2 + τ2 ∼ N(∆

√
1− I2, 1), W = ((k−1)/(σ2 +τ2))s2 ∼ χ2

k−1
and X =

√
W/(k − 1), where X and Y are independent, so that

T |(E = 1) =
Y

X
|
(
X >

√
1− I2

)
because the event that E = 1 is equivalent to s2 > σ2 and so is also equiv-
alent to X >

√
1− I2. Starting with the χ2 probability density function

of W and changing variables gives the probability density function of X as
f(x) = 2(k − 1)xχ2

k−1((k − 1)x2) where χ2
k−1(·) is the probability density

function of a χ2 distribution with (k−1) degrees of freedom. Since the event
that T ≤ t is equivalent to Y ≤ tX we can evaluate

{1− P (E = 0)}P (T ≤ t|E = 1) = 2(k−1)

∫ ∞
√
1−I2

xχ2
k−1((k−1)x2)

∫ tx

−∞
φ
(
y −∆

√
1− I2

)
dydx

so that

{1− P (E = 0)}P (T ≤ t|E = 1) = 2(k−1)

∫ ∞
√
1−I2

xΦ
(
tx−∆

√
1− I2

)
χ2
k−1

(
(k − 1)x2

)
dx

(7)
where we have obtained the probability that Y ≤ tX and X >

√
1− I2 by

integrating over the region where both criteria are satisfied. Substituting
(5), (6) and (7) into (4) gives equation (9) of the main paper.
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